Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering **BEC012 Cryptography and Network Security** Sixth Semester, 2016-17 (even Semester)

Course (catalog) description

To impart knowledge on Encryption techniques ,Key Management which include Elliptic Curve Architecture, introduces the Authentication requirements ,Authentication functions , Authentication code Authentication Applications and prominence given to cover the importance of the Network Security, System Level Security.

Compulsory/Elective course	:	Compulsory for ECE students
Credit & contact hours	:	3 & 45
Course Coordinator	:	Ms. S.POTHUMANI, Asst. Professor

:

Instructors

Name of the instructor	Class	Office	Office	Email (domain:@ bharathuniv.ac.in	Consultation
	handling	location	phone		
Ms. S.POTHUMANI	Third year	SA003			12.30-1.30PM
Ms. S.Arul Selvi	Third year	SA003		arulselvi.ece@bharathuniv.ac.in	12.30-1.30PM

Relationship to other courses:

Pre – requisites : Communication Engineering - I

Assumed knowledge : The students will have a mathematics background obtained at a high school (or equivalent) level. In particular, working knowledge of basic mathematics including factorization, Euclidean Algorithm technique, Modular Arithmetic's are assumed.

Following courses : BEC002 Integrated Service Digital Network, BEC007 Digital Image Processing, BCS 701 Grid and Cloud Computing, BET008 Wireless Networks

Syllabus Contents

UNIT I INTRODUCTION

9 HOURS

OSI Security Architecture - Classical Encryption techniques – Cipher Principles – Data Encryption Standard – Block Cipher Design Principles and Modes of Operation - Evaluation criteria for AES – AES Cipher – Triple DES – Placement of Encryption Function – Traffic Confidentiality

UNIT II PUBLIC KEY CRYPTOGRAPHY

UNIT III AUTHENTICATION AND HASH FUNCTION

- Confidentiality using Symmetric Encryption - Public Key Cryptography and RSA.

Authentication requirements – Authentication functions – Message Authentication Codes – Hash Functions – Security of Hash Functions and MACs – MD5 message Digest algorithm - Secure Hash Algorithm – RIPEMD – HMAC Digital Signatures – Authentication Protocols – Digital Signature Standard.

UNIT IV NETWORK SECURITY

Authentication Applications: Kerberos – X.509 Authentication Service – Electronic Mail Security – PGP – S/MIME – IP Security – Web Security.

UNIT V SYSTEM LEVEL SECURITY

Intrusion detection – password management – Viruses and related Threats – Virus Counter measures – Firewall Design Principles - Trusted Systems.

Text book(s) and/or required materials

- T1. William Stallings, Cryptography and Network Security, 6th Edition, Pearson Education, March 2013.
- T2. Charlie Kaufman, Radia Perlman and Mike Speciner, "Network Security", Prentice Hall of India,2002.

Refrence Books:

- R1 Behrouz A. Ferouzan, "Cryptography & Network Security", Tata Mc Graw Hill, 2007.
- R2 Charles Pfleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006.
- R3 Ulysess Black, "Internet Security Protocols", Pearson Education Asia, 2000.

R4 Charlie Kaufman and Radia Perlman, Mike Speciner, "Network Security, Second Edition, Private Communication in Public World", PHI 2002.

- R5 Bruce Schneier and Neils Ferguson, "Practical Cryptography", First Edition, Wiley Dream tech India Pvt Ltd, 2003.
- R6 www.ics.uci.edu/~stasio/spring04/ics180.html

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	40%
Professional subject	-	60%

Broad area: Cryptography and Network Security | Digital Image Processing | Cloud Computing | Wireless Networks | Computer Networks |

9 HOURS Key Management - Diffie-Hellman key Exchange – Elliptic Curve Architecture and Cryptography - Introduction to Number Theory

9 HOURS

9 HOURS

9 HOURS

TOTAL 45 HOURS

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3 rd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To learn various encryption techniques, understand the concept of Public key Correlates to program				
cryptography, study about message authentication and hash functions and to impart	outcome			
knowledge on Network security. This course emphasizes:	н	Μ	L	
1. Classify the symmetric encryption techniques.	a,h	c,e,f,g,i	k	
2. Illustrate various Public key cryptographic techniques.	c,g,j	а	B,i	
3. Evaluate the authentication and hash algorithms.	b,k	a,c,d,g,h,i	-	
4. Discuss authentication applications	b,c	a,e,i,k	-	
5. Summarize the intrusion detection and its solutions to overcome the attacks.	-	b,e,f,g,i	-	
6. Basic concepts of system level security	f	d,e,g	-	

H: high correlation, M: medium correlation, L: low correlation

Session	Topics Problem solving (Yes/No)		Text / Chapter	
UNITI	INTRODUCTION	(100)100		
1.	OSI architecture	No		
2.	Symmetric ciphers	Yes		
3.	Block cipher design	No	-	
4.	Modes of operation	No		
5.	Evaluation criteria AES	No	[T1] Chapter -1,2,3,5 [R1]Chapter-6 7	
6.	AES cipher	No		
7.	Triple DES	No		
8.	Placement of encryption	Yes		
9.	Traffic confidentiality	No		
UNITII	PUBLIC KEY CRYPTOGRAPHY			
10.	Key management	No		
11.	Diffie Helman	Yes		
12.	Elliptic Curve	Yes	[T1] Chaptor 9.0.10	
13.	Elliptic curve	Yes	[T1] Chapter -8,9,10 [T2]Chapter 7 [R1]Chapter-8,9	
14.	Number theory	Yes		
15.	Confidentiality –symmetric	Yes		
16.	Public key cryptography	Yes		
17.	RSA	No		
18.	RSA problems	Yes		
	AUTHENTICATION AND HASH FUNCTION	N.		
19.	Authentication	NO	-	
20.	Authentication requirement	No		
21.	Authentication functions	No	– [T1] Chapter -	
22.	Message Authentication	No	11,12,13,	
23.	Hash function	Yes	[T2]Chapter 2,3,5 [B1]Chapter-11 12 13	
24.	Security of Hash Function, Secure hash	Yes		
	Algorithm			
25.	MAC, MD5 Algorithm	No		
26.	HMAC Digital Signature	No		
	Page 4 of 8			

27.	Authentication Protocol	No	
	UNIT IV NETWORK SECURITY		L
28.	Authentication application	No	
29.	Kerberos	No	
30.	X.509 authentication services	No	
31.	Electronic mail security	No	
32.	PGP	No	[T1] Chapter -
33.	S/MIME	No	[T2]Chapter 13,14
34.	IP security No		
35.	Web security	No	
36.	Internet security	No	
	UNIT V SYSTEM LEVEL SECURITY		L
37.	Intrusion detection	No	
38.	Viruses	No	
39.	Viruses and related treats	No	
40.	Virus counter measures	No	[T1] Chapter -18,19,20
41.	Virus counter measures	No	
42.	Fire wall design	No	
43.	Fire wall design	No	
44.	Fire wall principle	No	1
45.	Trusted system	No	1

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /Seminar/online test/quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: Ms. S.POTHUMANI, Asst. Professor

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

a. An ability to apply knowledge of mathematics, science, and engineering

- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints
- such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively

h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and

societal context

- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Electronics Engineering graduates are provided with a strong foundation to passionately apply the fundamental principles of mathematics, science, and engineering knowledge to solve technical problems and also to combine fundamental knowledge of engineering principles with modern techniques to solve realistic, unstructured problems that arise in the field of Engineering and non-engineering efficiently and cost effectively.

PEO2: CORE COMPETENCE

Electronics engineering graduates have proficiency to enhance the skills and experience to apply their engineering knowledge, critical thinking and problem solving abilities in professional engineering practice for a wide variety of technical applications, including the design and usage of modern tools for improvement in the field of Electronics and Communication Engineering.

PEO3: PROFESSIONALISM

Electronics Engineering Graduates will be expected to pursue life-long learning by successfully participating in post graduate or any other professional program for continuous improvement which is a requisite for a successful engineer to become a leader in the work force or educational sector.

PEO4: SKILL

Electronics Engineering Graduates will become skilled in soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, interpersonal relationship, group discussion and leadership ability to become a better professional.

PEO5: ETHICS

Electronics Engineering Graduates are morally boosted to make decisions that are ethical, safe and environmentally-responsible and also to innovate continuously for societal improvement.

Course Teacher	Signature
Ms. S.POTHUMANI	
MS.S.ARUL SELVI	

Course Coordinator

HOD/ECE